WE ARE THE NAVIGATION EXPERTS

GNSS Simulation

Supported GNSS signals	Galileo: E1 B/		
Bandwidth	BeiDou: B1, B2 SBAS: L1 C/A Up to 120 MHz per RF output		
Constellation Update Rate Up to 2	Up to 120 MHz per RF output) Hz		
Resolution:	Up to 2x16 bit (complex I/Q) Linux Up to 128 (depending on selected signal components) - Satellite orbits based on ephemeris or orbit integration - Satellite clock model - Atmospheric delays - Ionospheric delay models: Klobuchar, Nequick-Gal, IONEX Tec Maps - Tropospheric delay models: Saastamoinen, Hopfield, GPT2w - Multipath models (statistical and deterministic) - Noise models for all delays customizable and highly (bit-true) reproducible - Antenna gain pattern and obstruction mask - IF signal parameters including RFFE simulation - User-configurable navigation message - Preciver movement simulation (input through GLIL user file or API)		
Operating system	Linux		
Number of channels	Up to 128 (depending on selected signal components)		
Simulation	 Satellite orbits based on ephemeris or orbit integration Satellite clock model Atmospheric delays Ionospheric delay models: Klobuchar, Nequick-Gal, IONEX Tec Maps Tropospheric delay models: Saastamoinen, Hopfield, GPT2w Multipath models (statistical and deterministic) Noise models for all delays customizable and highly (bit-true) reproducible Antenna gain pattern and obstruction mask IF signal parameters including RFFE simulation User-configurable navigation message Receiver movement simulation (input through GUI, user file or API) Simulation of multiple receivers within one simulation 		
Frequency Range	2x RF Tuner, 9kHz – 3 GHz (0.001 Hz resolution)		
Accuracy between RF1, RF2	Lower than 100us		
Reference accuracy	OCXO ±5 x 10-8 ageing per year <±1 x 10-8 temperature stability 10 min warm-up time		
Power level	Maximum power outpu Resolution: Uncertainty: Range: Dynamic range:	±0.5 dB: +10 dBm50 dBm tage: ±1.0 dB: below -50 dBm	
Spectral purity	Harmonics f >30 MHz: Harmonics f <30 MHz: Non harmonics >30 MH Non harmonics <30 MH	21	
Output IP3	<30 MHz @ 10 dBm dual 100 MHz @ 10 dBm dual 1575 MHz @ 10 dBm dua 2332.5 MHz @ 10 dBm dual	tone, 2 MHz spacing:	35 dBm typical 40 dBm typical 34 dBm typical 32 dBm typical
Continuous operation	Supported		
Simulation iteration rate	250Hz, 100Hz, 50Hz, 10Hz		
Simulation update rate of trajectory	250Hz, 100Hz, 50Hz, 10Hz, 1Hz		
Simulation of hardware in the loop HIL	250Hz, 100Hz, 50Hz, 10Hz, Latency to RF output < 2ms		
Simulation of receiver Antenna	Gain		
Simulation of transmit Antenna	Gain, Phase		
Logging capabilities	 Time related parameters Simulated vehicle trajectory parameters Receiver antenna parameters Satellite trajectory parameters Satellite transmit antenna parameters Received signal parameters 		

CCESA Acknowledgement: GIPSIE was partially developed under a programme of and funded by the European Space Agency. The view expressed herein can in no way be taken to reflect the official opinion of the European Space Agency.

A GNSS simulator for all your needs – testing and validating GNSS hardware, research or satellite constellation simulation.

Benefit from quickly created simulations and parameters that can be adjusted down to the smallest detail for more complex test scenarios.

Main User Interface

Configure satellite orbits, navigationmessages and change simulation parameters on-the-fly or in a hardware-in-the loop setup.

Improve your interference and spoofing countermeasures and mitigation strategies by using highly detailed signal simulations.

GIPSIE Signal Generation Hardware

Modular, Functional and Intuitive

GIPSIE is a GNSS simulator that is capable of generating all public GNSS signals and frequencies available today. It offers direct RF signal playback in real-time or alternatively digital IF baseband signal generation. Additionally, simulation of GNSS receiver observables is available. The simulator capabilities can be adjusted in terms of features to meet the user requirements exactly by offering optional signals, frequency bands and simulation of interference and multiple receivers.

Rich Set of Core Features

- Orbit simulation for all GNSS freely customizable
- Accurate models for atmospheric delays

 Ionosphere and Troposphere
- Receiver movement by defining position, velocity, acceleration and receiver attitude
- Unlimited number of simulated receivers and antennas
- Modelling of user-defined antenna characteristics and antenna arrays
- Multipath modelling

- In-depth interference and spoofing simulation
- Navigation message simulation based on GNSS ICDs or customized user-defined message formats
- GNSS interference simulation in the form of jamming and spoofing
- Real-time modification of scenario parameters during simulation runtime via API or GUI
- Graphical user interface or command line interface

GNSS Simulation

Enjoy GIPSIE'S Simulation Capabilities

The **GIPSIE** GNSS simulator is suitable for system integrators, GNSS equipment manufacturers and users, research institutions, governmental authorities and armed forces in a navigation warfare scenario.

- Control all parameters for a realistic and authentic GNSS signal environment
- Precisely repeat all tests
- Simulate new satellite constellations and signals in advance
- Test under laboratory environment and simulate GNSS denied environments realistically

Get in touch with us to learn how to optimize your resources and time in development, qualification and certification of GNSS equipment and GNSS applications!

OHB DIGITAL SOLUTIONS GMBH

+43-316-890971-0 info@ohb-digital.at www.ohb-digital.at

Headquarter: Rettenbacher Straße 22 A-8044 Graz, Austria Branch: Lothringerstraße 14/3 A-1030 Vienna, Austria

WE ARE THE NAVIGATION EXPERTS